Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

Identifieur interne : 002328 ( Main/Exploration ); précédent : 002327; suivant : 002329

Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

Auteurs : Ke Mao [République populaire de Chine] ; Libo Jiang [République populaire de Chine] ; Wenhao Bo [République populaire de Chine] ; Fang Xu [République populaire de Chine] ; Rongling Wu [République populaire de Chine]

Source :

RBID : pubmed:25503486

Descripteurs français

English descriptors

Abstract

Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

DOI: 10.1371/journal.pone.0115201
PubMed: 25503486
PubMed Central: PMC4264880


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.</title>
<author>
<name sortKey="Mao, Ke" sort="Mao, Ke" uniqKey="Mao K" first="Ke" last="Mao">Ke Mao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25503486</idno>
<idno type="pmid">25503486</idno>
<idno type="doi">10.1371/journal.pone.0115201</idno>
<idno type="pmc">PMC4264880</idno>
<idno type="wicri:Area/Main/Corpus">001E74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E74</idno>
<idno type="wicri:Area/Main/Curation">001E74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E74</idno>
<idno type="wicri:Area/Main/Exploration">001E74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.</title>
<author>
<name sortKey="Mao, Ke" sort="Mao, Ke" uniqKey="Mao K" first="Ke" last="Mao">Ke Mao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Cryptochromes (chemistry)</term>
<term>Cryptochromes (genetics)</term>
<term>Cryptochromes (metabolism)</term>
<term>DNA, Complementary (genetics)</term>
<term>Genes, Plant (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Protein Structure, Secondary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Cryptochromes (composition chimique)</term>
<term>Cryptochromes (génétique)</term>
<term>Cryptochromes (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cryptochromes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cryptochromes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Cryptochromes</term>
<term>DNA, Complementary</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Arabidopsis</term>
<term>Cryptochromes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Cryptochromes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cryptochromes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Genes, Plant</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Photosynthesis</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Modèles moléculaires</term>
<term>Photosynthèse</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25503486</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>e115201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0115201</ELocationID>
<Abstract>
<AbstractText>Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mao</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Libo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056931">Cryptochromes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056931" MajorTopicYN="N">Cryptochromes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25503486</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0115201</ArticleId>
<ArticleId IdType="pii">PONE-D-14-22063</ArticleId>
<ArticleId IdType="pmc">PMC4264880</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14982991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Nov 11;366(6451):162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8232555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 5;294(5540):154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17696-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17062752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Nov 28;322(5906):1365-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19039133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1997 Nov;45(5):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Apr 30;284(5415):760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10221900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 27;282(30):21720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Sep 5;114(5):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2589-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):961-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Jun;67:169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):61-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Nov;59(4):683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jan;220(3):498-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15714356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Dec;37(8):1094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1994 Feb;7(2):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8170919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12834405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 30;3(7):e2798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;393:726-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jun;18(5):551-556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Aug 18;269(5226):968-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7638620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1999;15:33-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jul 28;19(14):1216-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19559617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 30;282(13):9383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):804-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Oct;224(5):995-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2573-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1494-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008;165(5):482-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):523-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2006 Oct 2;85(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16725342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Apr;32(4):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2003 Aug 15;260(2):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 May 23;34(20):6892-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2010 Sep 23;8:e0135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Nov 27;253(1-2):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9003312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Feb;46(2):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Mar;8(3):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17304247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 23;27(8):1277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 16;392(6677):720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9565033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Dec;16(12):684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 5;268(5211):675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 1;332(6025):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2005 Nov-Dec;81(6):1291-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16164372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Oct;19(10):3146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 18;282(20):14916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Mao, Ke" sort="Mao, Ke" uniqKey="Mao K" first="Ke" last="Mao">Ke Mao</name>
</noRegion>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002328 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002328 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25503486
   |texte=   Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25503486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020